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Abstract

Many biological data sets are prepared using one-shot sampling, in which each

individual organism is sampled at most once. Time series therefore do not follow

trajectories of individuals over time. However, samples collected at different times from

individuals grown under the same conditions share the same perturbations of the

biological processes, and hence behave as surrogates for multiple samples from a single

individual at different times. This implies the importance of growing individuals under

multiple conditions if one-shot sampling is used. This paper models the condition effect

explicitly by using condition-dependent nominal mRNA production amounts for each

gene, it quantifies the performance of network structure estimators both analytically

and numerically, and it illustrates the difficulty in network reconstruction under

one-shot sampling when the condition effect is absent. A case study of an Arabidopsis

circadian clock network model is also included.
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Introduction 1

Time series data is important for studying biological processes in organisms because of 2

the dynamic nature of the biological systems. Ideally it is desirable to use time series 3

with multi-shot sampling, where each individual (such as a plant, animal, or 4

microorganism) is sampled multiple times to produce the trajectory of the biological 5

process, as in Fig 1. Then the natural biological variations in different individuals can 6

be leveraged for statistical inference, and thus inference can be made even if the samples 7

are prepared under the same experimental condition. 8

Fig 1. Multi-shot sampling. Each plant is observed four times.

However, in many experiments multi-shot sampling is not possible. Due to stress 9

response of the organisms and/or the large amount of cell tissue required for accurate 10

measurements, the dynamics of the relevant biological process in an individual of the 11

organism cannot be observed at multiple times without interference. For example, in an 12

RNA-seq experiment an individual plant is often only sampled once in its entire life, 13

leaving the dynamics unobserved at other times. See the discussion section for a review 14

of literature on this subject. We call the resulting time series data, as illustrated in 15

Fig 2, a time series with one-shot sampling. Because the time series with one-shot 16

sampling do not follow the trajectories of the same individuals, they do not capture all 17

the correlations in the biological processes. For example, the trajectory of observations 18

on plants 1–2–3–4 and that on 1–6–7–4 in Fig 2 are statistically identical. The resulting 19

partial observation renders some common models for the biological system dynamics 20

inaccurate or even irrelevant.

Fig 2. One-shot sampling. Each plant is observed once.

21

To address this problem, instead of getting multi-shot time series of single 22

individuals, one can grow multiple individuals under each condition with a variety of 23

conditions, and get one-shot time series of the single conditions. The one-shot samples 24

from the same condition then become a surrogate for multi-shot samples for a single 25

individual, as illustrated in Fig 3. In essence, if we view the preparation condition of 26

each sample as being random, then there should be a positive correlation among 27

samples grown under the same condition. We call this correlation the condition 28
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variation effect. It is similar to the effect of biological variation of a single individual 29

sampled at different times, if such sampling were possible.

Fig 3. One-shot sampling with two different conditions.

30

For each condition, the one-shot samples at different times are also complemented by 31

biological replicates, which are samples from independent individuals taken at the same 32

time used to reduce technical and/or biological variations. See the discussion section for 33

a review on how replicates are used for biological inference. With a budget over the 34

number of samples, a balance must be kept between the number of conditions, the 35

number of sampling times and the number of replicates. 36

To illustrate and quantify the effect of one-shot sampling in biological inference, we 37

introduce a simple dynamic gene expression model with a condition variation effect. We 38

consider a hypothesis testing setting and model the dynamics of the gene expression 39

levels at different sampling times by a dynamic Bayesian network (DBN), where the 40

randomness comes from nominal (or basal) biological and condition variations for each 41

gene. The nominal condition-dependent variation of gene j is the same for all plants in 42

that condition and the remaining variation is biological and is independent across the 43

individuals in the condition. In contrast to GeneNetWeaver [1], where the effect of a 44

condition is modeled by a random perturbation to the network coefficients, in our model 45

the condition effect is characterized by correlation in the nominal variation terms of the 46

dynamics. Note in both models samples from different individuals under the same 47

condition are statistically independent given the randomness associated with the 48

condition. 49

The contributions of this paper are threefold. 50

1. A composite hypothesis testing problem on the gene regulatory network is 51

formulated and a gene expression dynamic model that explicitly captures the 52

per-gene condition effect and the gene regulatory interactions is proposed. 53

2. The performance of gene regulatory network structure estimators is analyzed for 54

both multi-shot and one-shot sampling, with focus on two algorithms. 55

Furthermore, single-gene and multi-gene simulation results indicate that 56

multiple-condition experiments can somewhat mitigate the shortcomings of 57

October 21, 2019 3/32



one-shot sampling. 58

3. The difficulty of network reconstruction under one-shot sampling with no 59

condition effect is illustrated. This difficulty connects network analysis and 60

differential expression analysis, two common tasks in large-scale genomics studies, 61

in the sense that the part of network involving non-differentially expressed genes 62

may be harder to reconstruct. 63

The simulation code for generating the figures is available at [2]. 64

Materials and Methods 65

Stochastic model of time-series samples 66

This section formulates the hypothesis testing problem of learning the structure of the 67

gene regulatory network (GRN) from gene expression data with one-shot or multi-shot 68

sampling. The GRN is characterized by an unknown adjacency matrix. Given the GRN, 69

a dynamic Bayesian network model is used for the gene expression evolution with time. 70

Two parameters σco,j and σbi,j are used for each gene j, with the former explicitly 71

capturing the condition variation effect and the latter capturing the biological variation 72

level. 73

Notation 74

For any positive integer n, let [n] = {1, 2, . . . , n}. We use (f(x))x∈I to denote the 75

family of elements in the set {f(x) : x ∈ I} indexed by the index set I. The indicator 76

function on a statement or a set P is denoted by 1P . The n-by-n identity matrix is 77

denoted by In. The transpose of matrix A is denoted by A∗. 78

Model for gene regulatory network topology 79

Let n be the number of genes and let A ∈ A ⊆ Rn×n be the unknown adjacency matrix 80

of the GRN. The sign of the entry aij of A for i 6= j indicates the type of regulation of j 81

by i, and the absolute value the strength of the regulation. A zero entry aij = 0 with 82

i 6= j indicates no regulation of j by i. The diagonal of A characterizes protein 83

concentration passed from the previous time, protein degradation, and gene 84

October 21, 2019 4/32



autoregulation. Let S = {S1, S2, . . . , S|S|} be a finite set of network structures and let 85

D be a mapping from A to S; D(A) represents the network structure of an adjacency 86

matrix A. Then A is partitioned by the associated network structures. Fix a loss 87

function l : S2 → R. Let Y ∈ Y be the random observation and let δ : Y → S be an 88

estimator for the structure. The performance of an estimator is evaluated by the 89

expected loss E l(D(A), δ(Y )). This is a hypothesis testing problem with composite 90

hypotheses
{
D−1(S) : S ∈ S

}
. This paper considers network reconstruction up to 91

regulation type with D(A) = (sgn(Aij))(i,j)∈[n]2 , where sgn(s) = 1{s>0} − 1{s<0}. In 92

other words, the ternary value of the edge signs (positive, negative, or no edge) are to 93

be recovered. A structure S has the form S = (Sij)(i,j)∈[n]2 with Sij ∈ {0, 1,−1}, and it 94

can be interpreted as a directed graph with possible self-loops. Some examples of loss 95

functions are as follows. 96

• Ternary false discovery rate (FDR) 97

lFDR(S, S′) = 1−
∑n
i=1

∑n
j=1 1{Sij=S′ij 6=0}∑n

i=1

∑n
j=1 1{S′ij 6=0}

.

• Ternary false negative rate (FNR) 98

lFNR(S, S′) = 1−
∑n
i=1

∑n
j=1 1{Sij=S′ij 6=0}∑n

i=1

∑n
j=1 1{Sij 6=0}

.

• Ternary false positive rate (FPR) 99

lFPR(S, S′) = 1−
∑n
i=1

∑n
j=1 1{Sij=S′ij=0}∑n

i=1

∑n
j=1 1{Sij=0}

.

• Ternary error rate 100

lE(S, S′) =
1

n2

n∑
i=1

n∑
j=1

1{Sij 6=S′ij}.

Note the FDR and the FNR are well-defined when S′ and S contains nonzero elements, 101

respectively, and the FPR is well-defined when S contains zeros. The error rate is 102

always well-defined. It can be seen that lFDR(S, S′) = lFNR(S′, S). Also if S does not 103

contain zeros then lFNR(S, S′) = lE(S, S′). Similarly if S′ does not contain zeros then 104

lFDR(S, S′) = lE(S, S′). As an example, for a random guessing algorithm with 105
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probabilities of S′ij = 0, 1,−1 being 1− q, q/2, q/2 and a network prior with probabilities 106

of Sij = 0, 1,−1 being 1− p, p/2, p/2, lFDR = 1− p/2, lFNR = 1− q/2, and lFPR = q. 107

Model for gene expression dynamics 108

This section models the gene expression dynamics of individuals by a dynamic Bayesian 109

networks with parameters σco,j and σbi,j as the condition variation level and biological 110

variation level for gene j. 111

Let K, T and C be the number of individuals, sampling times, and conditions, 112

respectively. Let Xk
j (t) ∈ R be the expression level of gene j ∈ [n] in individual k ∈ [K] 113

at time t ∈ [T ], and let ck ∈ [C] be the label that indicates the condition for individual 114

k. Here we assume Xk
j (t) represents both the mRNA abundance and the protein 115

concentration. The gene expression levels evolve according to the Gaussian linear model 116

(GLM) with initial condition Xk
j (0) = 0 for any j ∈ [n], k ∈ [K] and the following 117

recursion (note the values of X can be the expression levels after a logarithm transform, 118

in which case lowly expressed genes have negative X values) 119

Xk
j (t+ 1) =

n∑
i=1

Xk
i (t)Aij + σco,jW

ck
co,j(t+ 1) + σbi,jW

k
bi,j(t+ 1), (1)

for j ∈ [n], k ∈ [K], and t ∈ {0, 1, . . . , T − 1}, where
(
W c

co,j(t)
)
(c,j,t)∈[C]×[n]×[T ]

and 120(
W j

bi,k(t)
)
(j,k,t)∈[n]×[K]×[T ]

are collections of independent standard Gaussian random 121

variables that are used to drive the dynamics. Here the last two terms in (1) denote the 122

condition variation and biological variation, respectively. To write (1) in matrix form, 123

we let X(t) =
(
Xk
j (t)

)
(k,j)∈[K]×[n] and W (t) =

(
W k
j (t)

)
(k,j)∈[K]×[n] be K-by-n matrices, 124

where W k
j (t) = σco,jW

ck
co,j(t) + σbi,jW

k
bi,j(t). Then 125

X(t+ 1) = X(t)A+W (t+ 1) (2)

and hence 126

X(t) =
t∑

τ=1

W (τ)At−τ . (3)

The variable W k
j (t) is the nominal mRNA production amount for target gene j, 127

individual k at time t that would occur in the absence of regulation by other genes. 128
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Model for sampling method 129

In this section two sampling methods are described: one-shot sampling and multi-shot 130

sampling. For simplicity, throughout this paper we consider a full factorial design with 131

CRT samples obtained under C conditions, R replicates and T sampling times, denoted 132

by Y = (Y c,r,t)(c,r,t)∈[C]×[R]×[T ]. In other words, instead of X we observe Y , a noisy 133

and possibly partial observation of X. Here the triple index for each sample indicates 134

the condition, replicate, and time. As we will see in the discussion at the end of this 135

section, for either sampling method, the biological variation level σbi,j can be reduced 136

by combining multiple individuals to form a single sample. 137

Multi-shot sampling Assume an individual can be sampled multiple times. This 138

sampling model corresponds to K = CR and ck = d kRe ∈ [C] for all k ∈ [K]. 139

Equivalently, multi-index (c, r) can be used to determine the individual instead of k for 140

X and W with c denoting the condition and r the replicate. Then (1) for multi-shot 141

sampling can be rewritten as 142

Xc,r
j (t+ 1) =

n∑
i=1

Xc,r
i (t)Aij + σco,jW

c
co,j(t+ 1) + σbi,jW

c,r
bi,j(t+ 1),

and the observation for condition c, replicate r and time t is 143

Y c,r,tj = Xc,r
j (t) + σte,jZ

c,r,t
j , (4)

with
(
Zc,r,tj

)
(j,c,r,t)∈[n]×[C]×[R]×[T ]

being a collection of independent standard Gaussian 144

random variables modeling the observation noise, and σte,j is the technical variance 145

level of gene j. We see that for fixed c and r the observations at different times are from 146

the same individual with the multi-index (c, r). As a result, with multi-shot sampling Y 147

is a noisy full observation of X. 148

One-shot sampling Assume an individual can be sampled only once. This model 149

corresponds to K = CRT and ck = d k
RT e ∈ [C] for all k ∈ [K]. Equivalently, with 150

multi-index (c, r, s) denoting the condition, the replicate, and the target sampling time, 151

the evolution (1) for one-shot sampling can be rewritten as 152
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Xc,r,s
j (t+ 1) =

n∑
i=1

Xc,r,s
i (t)Aij + σco,jW

c
co,j(t+ 1) + σbi,jW

c,r,s
bi,j (t+ 1),

and the observation is 153

Y c,r,tj = Xc,r,t
j (t) + σte,jZ

c,r,t
j . (5)

Again σte,j is the observation noise level of gene j and the Z’s are independent standard 154

Gaussian random variables. Note that for fixed c and r the observations at different 155

times are from different individuals because the triple indices are different. Hence with 156

one-shot sampling, Y is a noisy partial observation of X (to see this, note for gene 1 157

and the individual indexed by condition 1, replicate 1, and target sampling time 1, 158

X1,1,1
1 (1), which is the expression level at time 1, is observed through Y 1,1,1

1 but 159

X1,1,1
1 (2), which is the expression level at time 2, is not observed). 160

Discussion on sources of variance The σco,jW c
co,j(t) terms measure the 161

condition-dependent nominal production level as global driving noise terms that are 162

shared across individuals under the same condition. They are independent and 163

identically distributed (i.i.d.) across conditions. The σbi,jW k
bi,j(t) terms measure the 164

biological nominal production level of individuals as local driving noise terms. They are 165

i.i.d. across individuals. The σte,jZ
c,r,t
j terms measure the technical variation of samples 166

as additive observational noise terms that are not in the evolution of X. They are i.i.d. 167

across samples. We then have the following observations. 168

1. If the samples of the individuals under many different conditions are averaged and 169

treated as a single sample, then effectively σco,j , σbi,j and σte,j are reduced. 170

2. If the samples of R individuals under same conditions (biological replicates) are 171

averaged and treated as a single sample, then effectively σ2
bi,j and σ

2
te,j are 172

reduced by a factor of R while σ2
co,j remains unchanged. 173

3. If material from multiple individuals grown under the same condition is combined 174

into a composite sample before measuring, then effectively σbi,j is reduced while 175

σco,j and σte,j remain unchanged. Note for microorganisms a sample may consist 176

October 21, 2019 8/32



of millions of individuals and the biological variation is practically eliminated 177

(σbi,j ≈ 0). 178

4. If the samples from same individuals (technical replicates) are averaged and 179

treated as a single sample, then effectively σte,j is reduced while σco,j and σbi,j 180

remain unchanged. 181

Note this sampling model with hierarchical driving and observational noises can also be 182

used for single-cell RNA sequencing (scRNAseq) in addition to bulk RNA sequencing 183

and microarray experiments. For scRNAseq, σco,j can model the tissue-dependent 184

variation (the global effect) and σbi,j the per-cell variation (the local effect). 185

Results 186

Performance evaluation of network structure estimators 187

This section studies the performance of network structure estimators with multi-shot 188

and one-shot sampling data. First, general properties of the two sampling methods are 189

obtained. Then two algorithms, the generalized likelihood-ratio test (GLRT) and the 190

basic sparse linear regression (BSLR), are studied. The former is a standard decision 191

rule for composite hypothesis testing problems and is shown to have some properties 192

but is computationally infeasible for even a small number of genes. The latter is an 193

algorithm based on linear regression, and is feasible for a moderate number of genes. 194

Finally simulation results for a single-gene network with GLRT and for a multi-gene 195

network with BSLR are shown. 196

General properties 197

By (3), (4) and (5), the samples Y are jointly Gaussian with zero mean. The covariance 198

of the random tensor Y is derived under the two sampling methods in the following. 199

Under multi-shot sampling, the samples under different conditions are independent 200

and hence uncorrelated. Consider Y c,r,t and Y c,r
′,t′ , which are two samples under the 201

same condition and collected at times t and t′. The covariance matrix between Y c,r,t 202

and Y c,r
′,t′ is the sum of the covariance matrices of their common variations at times τ 203

for 1 ≤ τ ≤ t ∧ t′ multiplied by (A∗)t−τ on the left and At
′−τ on the right, plus 204
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covariance for the observation noise. Let Σco = diag(σ2
co,1, σ

2
co,2, . . . , σ

2
co,n), 205

Σbi = diag(σ2
bi,1, σ

2
bi,2, . . . , σ

2
bi,n), and Σte = diag(σ2

te,1, σ
2
te,2, . . . , σ

2
te,n). Then the 206

covariance matrix of the variations is Σco + Σbi if the two samples are from the same 207

individual (i.e., r = r′), and Σco otherwise. This yields: 208

E[(Y c,r,t)∗Y c
′,r′,t′ ]

=



∑t
τ=1(A∗)t−τ (Σco + Σbi)A

t−τ + Σte if (c, r, t) = (c′, r′, t′),∑t∧t′
τ=1(A∗)t−τ (Σco + Σbi)A

t′−τ if (c, r) = (c′, r′) and t 6= t′,∑t∧t′
τ=1(A∗)t−τΣcoA

t′−τ if c = c′ and r 6= r′,

0 if c 6= c′.

Under one-shot sampling the only difference compared with multi-shot sampling is 209

that two samples indexed by (c, r, t) and (c, r, t′) are from different individuals if t 6= t′. 210

So 211

E[(Y c,r,t)∗Y c
′,r′,t′ ] (6)

=



∑t
τ=1(A∗)t−τ (Σco + Σbi)A

t−τ + Σte if (c, r, t) = (c′, r′, t′),∑t∧t′
τ=1(A∗)t−τΣcoA

t′−τ if c = c′ and (r, t) 6= (r′, t′),

0 if c 6= c′.

For any fixed network structure estimator: 212

1. If Σbi = 0 and C, R and T are fixed, the joint distribution of the data is the same 213

for both types of sampling. So the performance of the estimator would be the 214

same for multi-shot and one-shot sampling. 215

2. If Σbi = 0 and Σte = 0 (no observation noise) and C, T are fixed, the joint 216

distribution of the data is the same for both types of sampling (as noted in item 1) 217

and any replicates beyond the first are identical to the first. So the performance of 218

the estimator can be obtained even if all replicates beyond the first are discarded. 219
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3. Under multi-shot sampling, when C, R, T are fixed with R = 1, the joint 220

distribution of the data depends on Σco and Σbi only through their sum. So the 221

performance of the estimator would be the same for all Σco and Σbi such that 222

Σco + Σbi is the same. 223

4. In the homogeneous gene case with σco,j = σco, σbi,j = σbi, σte,j = σte for all j 224

with σ∗co + σ∗bi + σ∗te > 0, suppose that the estimator δ is based on replicate 225

averages y = (yc,t)(c,t)∈[C]×[T ] with y
c,t = 1

R

∑R
r=1 Y

c,r,t, and that δ is 226

scale-invariant (i.e., δ(Y ) = δ(c0Y ) for any c0 6= 0 and Y ). Then under multi-shot 227

sampling, δ’s performance depends on σco, σbi, σte and R only through the ratio 228

σ2
te/R

σ2
co+σ

2
bi/R+σ2

te/R
. Under one-shot sampling, the estimator’s performance depends 229

on σco, σbi, σte and R only through the ratios σ2
te/R

σ2
co+σ

2
bi/R+σ2

te/R
and σ2

co

σ2
co+σ

2
bi/R

230

(through the latter only when σ2
co + σ2

bi > 0). 231

To see 4), recall from observation 2 above that averaging reduces the variance of the 232

biological variation and that of the observation noise by a factor of R due to 233

independence, but preserves the condition variation because it is identical across 234

replicates. Hence the variance of the driving noise in the averages is σ2
co + σ2

bi/R and 235

the variance of the observation noise of the averages is σ2
te/R. Then the averages are 236

essentially single-replicate data, and the performance under multi-shot sampling 237

depends only on the ratio of the new driving noise variance to the new observational 238

noise variance. For one-shot sampling the ratio between the condition variation and the 239

biological variation also matters for the single-replicate data when the condition 240

variation and the biological variation are not both zero, so the performance also 241

depends on σ2
co

σ2
co+σ

2
bi/R

. 242

Network reconstruction algorithms 243

In this section we introduce GLRT and BSLR. GLRT is a standard choice in composite 244

hypothesis testing setting. We observe some properties for GLRT under one-shot and 245

multi-shot sampling. However, GLRT involves optimizing the likelihood over the entire 246

parameter space, which grows exponentially with the square of the number of genes. 247

Hence GLRT is hard to compute for multiple-gene network reconstruction. In contrast, 248

BSLR is an intuitive algorithm based on linear regression, and will be shown in 249
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simulations to perform reasonably well for multi-gene scenarios. 250

GLRT The GLRT (see, e.g., page 38, Chapter II.E in [3]) is given by 251

δ(y) = D(ÂML(y)), where ÂML(y) is the maximum-likelihood estimate for A based on 252

the covariance of Y given the observation Y = y. 253

Proposition 1. GLRT (with the knowledge of Σco, Σbi and Σte) has the following 254

properties. 255

1. For a fixed σ2, under multi-shot sampling with Σte = 0 (no observation noise), 256

σco,j = σco, σbi,j = σbi, and σ2
co + σ2

bi = σ2, the performance of GLRT for sign 257

estimation is the same for all (R, σco, σbi) excluding (R ≥ 2, σbi = 0). 258

2. Under one-shot sampling and Σco = 0, the log likelihood of the data as a function 259

of A (i.e. the log likelihood function) is invariant with respect to replacing A by 260

−A. So, for the single-gene n = 1 case, the log likelihood function is an even 261

function of A, and thus the GLRT will do no better than random guessing. 262

For 2 it suffices to notice in (6) the covariance is invariant with respect to changing 263

A to −A. A proof of 1 is given below. 264

Proof of 1). We first prove it for the case of a single gene with constant T and a 265

constant number of individuals, CR. To do that we need to look at the likelihood 266

function closely. 267

We may assume σ2 = 1. Because the trajectories for different conditions are 268

independent (for given parameters (A, σ2
co)), we shall first consider the case with a 269

single condition; i.e., C = 1. There are hence R trajectories of length T . Then the 270

covariance matrix of the length-R driving vector used at time t for the trajectories is 271

Cov(W (t)) = (1− σ2
co)IR + σ2

coJR =: Σ.

When σco > 0, Σ is not the identity matrix multiplied by some constant; i.e., the noise 272

vector W (t) is colored across replicates. It can be checked when σco < 1 (i.e., σbi > 0) 273

the matrix Σ is positive definite. Then there exists an orthogonal matrix U and a 274

diagonal matrix Λ with positive diagonal elements such that Σ = UΛU∗. Let 275

Σ−1/2 = UΛ−1/2U∗ and let 276
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X̃(t) = Σ−1/2X(t),

W̃ (t) = Σ−1/2W (t)

for all t ∈ [T ]. Then the trajectories for the R replicates in a single condition become: 277

X̃(t+ 1) = X̃(t)A+ W̃ (t+ 1).

It can be checked that after the linear transformation by Σ−1/2, which does not depend 278

on A, the new driving vectors are white (i.e., Cov(W̃ (t)) = IR). It follows that the 279

distribution of X̃|(A, σ2
co) is the same as the distribution of X|(A, 0) (i.e. σco = 0). 280

Therefore, for x = (xr(t))(r,t)∈[R]×[T ], if we let LX(x|A, σ2
co) denote the likelihood of 281

X = x for parameters A, σ2
co, then 282

LX(x|A, σ2
co) = LX̃(x̃|A, σ2

co)d(R, T, σ2
co) = LX(x̃|A, 0)d(R, T, σ2

co),

where d(R, T, σ2
co) = (det Σ)−T/2 is a function of R, T and σ2

co, and x̃(t) = Σ−1/2x(t). 283

Now consider the likelihood function for all CRT samples with general C. It is the 284

product of C likelihood functions for the samples prepared under the C different 285

conditions. It is thus equal to d(R, T, σ2
co)C times the likelihood of the transformed 286

expression levels x̃, which is the likelihood function for σco = 0 and a total of CRT 287

samples. The form of the product depends on C and R only through CR, because 288

under the transformation, all CR trajectories are independent. Hence, for fixed 289

A, σ2
co, C,R, T the distribution of the maximum likelihood estimate of A, when the 290

samples are generated using a given σco > 0 (so the R individuals under each condition 291

are correlated) and the likelihood function also uses σ2
co, is the same as the distribution 292

of the maximum likelihood estimate of A when σco = 0 (in which case the CR 293

individual trajectories are i.i.d.). Formally, 294

Eσco l(D(A), δ(Y )) = Eσco l(D(A), D(arg max
A′

LX(X|A′, σ2
co)))

= Eσco l(D(A), D(arg max
A′

LX(X̃|A′, 0)))
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= E0 l(D(A), D(arg max
A′

LX(X|A′, 0)))

= E0 l(D(A), δ(Y )),

where Eσco
denotes that the condition variation level of the random elements X and Y 295

is σ2
co. The above fails if σco = 1 (i.e., σbi = 0) and R ≥ 2 because then Σ is singular. It 296

also fails if σco and σbi are unknown to the GLRT. 297

For the general model with multiple genes, if σco,j is the same for each gene j, 1) 298

holds as before – for the proof, apply left multiplication by Σ−
1
2 for each gene, time, 299

and condition to all R samples in the condition. View (2) as an update equation for an 300

R× n matrix for each group of R samples in one condition. One column of length R per 301

gene, and one row per sample. 302

BSLR In BSLR, replicates are averaged and the average gene expression levels at 303

different times under different conditions are fitted in a linear regression model with 304

best-subset sparse model selection, followed by a Granger causality test to eliminate the 305

false discoveries. BSLR is similar to other two-stage linear regression–based network 306

reconstruction algorithms, notably oCSE [4] and CaSPIAN [5]. Both oCSE and 307

CaSPIAN use greedy algorithms in the first build-up stage, making them more suitable 308

for large-scale problems. In contrast, BSLR uses best subset selection, which is 309

conceptually simpler but computationally expensive for large n. For the tear-down stage 310

both BSLR and CaSPIAN use the Granger causality test, while oCSE uses a 311

permutation test. 312

Build-up stage In the first stage BSLR finds potential regulatory interactions 313

using a linear regression model. Let Y cj (t) = 1
R

∑R
r=1 Y

c,r,t and let 314

Y (t) =
(
Y cj (t)

)
(c,j)∈[C]×[n] denote the C-by-n matrix. Let 315

Ψ(1) =



Y (2)

Y (3)

...

Y (T )


and 316
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Ψ(0) =



Y (1)

Y (2)

...

Y (T − 1)


.

For each target gene j ∈ [n], BSLR solves the following best subset selection problem 317

with a subset size k < n: 318

minimize
A·j ,bj ,dj

‖Ψj(1)−Ψ(0)A·j − djΨj(0)− bj1‖22

subject to ‖A·j‖0 ≤ k and Ajj = 0.

Denote the solution by (A∗, b∗, d∗). The output of the first stage is then A∗. 319

A naive algorithm to solve the above optimization has a computational complexity 320

of O(nk+1) for fixed k as n→∞. Faster near-optimal alternatives exist [6]. 321

Tear-down stage The second stage is the same as that of CaSPIAN. For each 322

j ∈ [n] and each i ∈ supp(A∗·j), let the unrestricted residual sum of squares be 323

RSSu = ‖Ψj(1)−Ψ(0)A∗·j − d∗jΨj(0)− b∗j1‖22

and the restricted residual sum of squares 324

RSSr = inf{‖Ψj(1)−Ψ(0)A·j − djΨj(0)− bj1‖22 :

supp(A·j) = supp(A∗·j)\{i}}.

The F -statistic is given by 325

F =
RSSr − RSSu

RSSu/(C(T − 1)− k − 2)
.

The potential parent i of j is removed in the tear-down stage if the p-value of the 326

F -statistic with degrees of freedom (1, C(T − 1)− k − 2) is above the preset significance 327

level (e.g., 0.05). Note the tests are done for all parents in A·j simultaneously; both the 328

restricted and the unrestricted models contain the other potential parents regardless of 329
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the results of the tests on them. 330

Simulations on single-gene network reconstruction 331

The GLM is used to simulate one-shot sampling data with a single gene. The goal is to 332

determine the type of autoregulation of the single gene (activation or repression). The 333

protein concentration passed from the previous time is ignored so the type of 334

autoregulation is represented by the sign of the scalar A. In order to compare one-shot 335

and multi-shot sampling, we view the main expense to be proportional to the number of 336

samples to prepare as opposed to the number of individuals to grow. We thus fix a total 337

budget of CRT = 180 samples and consider full factorial design with C and R varying 338

with CR = 30, and T = 6 with 10 000 simulations. We assume the knowledge of the 339

existence of the autoregulation (i.e., A 6= 0), in which case the FDR, the FNR and the 340

error rate coincide, so we only look at error rates. The results are plotted in Fig 4. The 341

four plots on the left are for one-shot sampling and the four on the right are for 342

multi-shot sampling. Consider the homogeneous case with σco,j = σco, σbi,j = σbi and 343

σte,j = σte for all j and let γ =
σ2
co

σ2
co+σ

2
bi

be the fraction of condition variation in the 344

driving noise. For each plot the observed probability of sign (of A) error is shown for 345

γ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0} and for R ranging over the divisors of 30 from smallest to 346

largest. Figs 4a–4d show the performance for the GLRT algorithm assuming no 347

observation noise (σte = 0), known γ and known total driving variation 348

σ2 = σ2
co + σ2

bi = 1. Figs 4e–4h show the performance for the GLRT algorithm assuming 349

known driving noise level σ = 1 and observational noise level σte = 1, while both γ and 350

A are unknown to the algorithm.

Fig 4. Performance of the GLRT in single-gene sign recovery with different
numbers of replicates.

351

The numerical simulations reflect the following observations implied by the 352

analytical model. 353

1. Under one-shot sampling, when γ = 0, the GLRT is equivalent to random 354

guessing. 355

2. The GLRT performs the same under one-shot and multi-shot sampling when 356

γ = 1. 357
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3. Under no observation noise, the performance for multi-shot sampling is the same 358

for all γ < 1. 359

Some empirical observations are in order. 360

1. Multi-shot sampling outperforms one-shot sampling (unless γ = 1, where they 361

have the same error probability). 362

2. For one-shot sampling, the performance improves as γ increases. Regarding the 363

number of replicates R per condition, if γ = 0.2 (small condition effect), a medium 364

number of replicates (2 to 5) outperforms the single replicate strategy. For larger 365

γ, one replicate per condition is the best. 366

3. For multi-shot sampling, performance worsens as γ increases. One replicate per 367

condition (R = 1) is best. 368

4. Comparing Figs 4a–4d vs. Figs 4e–4h, we observe that the performance degrades 369

with the addition of observation noise, though for moderate noise (σte = 1.0) the 370

effect of observation noise on the sign error is not large. Also, the effect of the 371

algorithm not knowing γ is not large. 372

Simulations on multi-gene network reconstruction 373

This subsection studies the case when multiple genes interact through the GRN. The 374

goal is to compare one-shot vs. multi-shot sampling for BSLR under a variety of 375

scenarios, including different homogeneous γ values, varying number of replicates, 376

varying observation noise level, and heterogeneous γ values. 377

The performance evaluation for multi-gene network reconstruction is trickier than 378

the single-gene case because of the many degrees of freedom introduced by the number 379

of genes. First, the network adjacency matrix A is now an n-by-n matrix. While some 380

notion of “size” of A (like the spectral radius or the matrix norm) may be important, 381

potentially every entry of A may affect the reconstruction result. So instead of fixing a 382

ground truth A as in Fig 4, we fix a prior distribution of A with split Gaussian prior 383

described in Appendix S2 (note we assume the knowledge of no autoregulation), and 384

choose A i.i.d. from the prior distribution with dmax = 3. Second, because the prior of 385

A can be subject to sparsity constraints and thus far from a uniform distribution, 386
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multiple loss functions that are more meaningful than the ternary error rate can be 387

considered for performance. So we consider ternary FDR, ternary FNR and ternary 388

FPR for the multi-gene case. In the simulations we have 20 genes and dmax = 3 with 389

in-degree uniformly distributed over {0, 1, . . . , dmax}, so the average in-degree is 1.5. 390

The number of sampling times is T = 6 and CR = 30. 391

Varying γ, R and σte In this set of simulations we fix the observation noise level 392

and vary the number of replicates R and the condition correlation coefficient γ. The 393

performance of BSLR under one-shot and multi-shot sampling is shown in Fig 5 394

(σte = 0) and Fig 6 (σte = 1). Note BSLR does not apply to a single condition with 30 395

replicates due to the constraint that the degrees of freedom C(T − 1)− k − 2 in the 396

second stage must be at least 1.

Fig 5. Performance of the BSLR in multi-gene network reconstruction with
different numbers of replicates, σte = 0.

Fig 6. Performance of the BSLR in multi-gene network reconstruction with
different numbers of replicates, σte = 1.

397

For one-shot sampling, when γ = 0, we see in both Fig 5 and Fig 6 that BSLR is no 398

different from random guessing, with an FDR close to 1− 1
2
1.5
19 ≈ 0.96 and an FNR and 399

an FPR such that lFNR + 1
2 lFPR ≈ 1 (recall the example of random guessing at the end 400

of the section of the model for gene regulatory network topology). When γ = 1, BSLR 401

performs similarly with one-shot or multi-shot sampling, which is consistent with 402

property 1 in the section on general properties. As γ increases from 0 to 1, under 403

one-shot sampling for a fixed number of replicates, the FDR and FNR reduce greatly. 404

For example, as γ increases from 0.2 to 1, the FDR for single replicate under one-shot 405

sampling decreases from 0.74 to 0.31 with noiseless data (Fig 5), and from 0.79 to 0.36 406

with noisy data (Fig 6), while the FNR decreases from 0.70 to 0.00 with noiseless data, 407

and from 0.78 to 0.04 with noisy data. This decrease is more pronounced for smaller 408

number of replicates. Note the trend of the performance of BSLR under one-shot 409

sampling as a function of R and γ is very similar to that of GLRT in Figs 4e and 4g 410

For multi-shot sampling, in the noiseless case, we see all three losses are invariant 411

with respect to different γ for fixed R, which is consistent with property 4 in the section 412
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on general properties because BSLR is an average-based scale-invariant algorithm (note 413

CR is a constant so for different R the performance is different due to the change in C). 414

In the noisy case, the FDR and FNR slightly decrease as γ increases, which is an 415

opposite trend compared with Figs 4f and 4h. 416

In summary, the main conclusions from Figs 5 and 6 are the following. 417

• The performance of BSLR under multi-shot sampling is consistently better than 418

that under one-shot sampling. 419

• The performance of BSLR under one-shot sampling varies with γ, from random 420

guessing performance at γ = 0 to the same performance as multi-shot sampling at 421

γ = 1. 422

• By comparing Fig 5 with Fig 6, we see the observation noise of σte = 1 has only a 423

small effect on the performance with the two sampling methods. 424

Reduced number of directly differentially expressed genes In the above 425

simulations we have assumed all genes are equally directly differentially expressed. In 426

other words, we took σ2
co,j + σ2

bi,j = 1 and σco,j = σco for all j. To test what happens 427

more generally, we conducted simulations such that only half of the genes are directly 428

differentially expressed genes (DDEGs), while the other half are non-DDEGs. To do so, 429

we assign σ2
co,j = 0.8 and σ2

bi,j = 0.2 for 1 ≤ j ≤ 10, and σ2
co,j = 0 and σ2

bi,j = 1 for 430

11 ≤ j ≤ 20. The results for R = 3 are pictured in Fig 7. We see that with one-shot 431

sampling the edges coming out of the DDEGs are reconstructed with lower FDR and 432

FNR compared to those coming out of non-DDEGs. However, under one-shot sampling, 433

even the edges from the non-DDEGs in Fig 7 are recovered with much lower FDR and 434

FNR, as compared to one-shot sampling in Fig 6 with γ = 0 and R = 3 (both FDR and 435

FNR are around 0.95). The results indicate that the performance of BSLR under 436

one-shot sampling benefits from diversity in conditions even when not all genes are 437

directly differentially expressed.

Fig 7. Performance of BSLR for heterogeneous σco,j with σte = 1.

438

We summarize the simulations performed in Table 1. Note the last row is a summary 439

of Table 2 in the Discussion section. 440
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result algorithm setting key observations

Fig 4 GLRT single-gene

• MS ≤ OS
• OS = RG at γ = 0∗

• OS = MS at γ = 1∗

• OS decreases with γ
• MS without noise is the same for R = 1 or γ < 1∗

• MS with noise increases with γ
• optimal R for OS depends on γ
• noise and unknown γ slightly affects performance

Fig 5 BSLR

• MS ≤ OS
multi-gene, • OS = RG at γ = 0

• OS = MS at γ = 1∗

noiseless • OS decreases with γ
• MS constant with γ for given R∗

Fig 6 BSLR

• MS ≤ OS
multi-gene, • OS = RG at γ = 0

• OS = MS at γ = 1∗

noisy • OS decreases with γ
• noise slightly affects performance

Fig 7 BSLR
multi-gene, • DDEG regulation is better recovered

heterogeneous γ • non-DDEG regulation is recovered better
in the presence of DDEGs

Table 2 BSLR Locke model
• MS < OS with biologically plausible data
• OS is better with replicate averaging
• MS is better without replicate averaging

Table 1. Summary of simulation results. OS and MS stand for the losses of one-shot sampling and multi-shot sampling.
RG stands for random guessing. ∗ indicates mathematically proved results.
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Information limitation for reconstruction under one shot 441

sampling without condition effect 442

In the previous section it is shown that both GLRT and BSLR are close to random 443

guessing under one-shot sampling when σco,j = 0 for all j. This leads us to the following 444

question: is the network reconstruction with no condition effect (σco,j = 0 for all j) 445

information theoretically possible? In this section we examine this question under 446

general estimator-independent settings. Note in this case the trajectories of all 447

individuals are independent given A regardless of (ck)k∈[K]. 448

As we have seen in Proposition 1 part 2, when Σco = 0, the distribution of the 449

observed data Y is invariant under adjacency matrix A or −A, implying any estimator 450

will have a sign error probability no better than random guessing for the average or 451

worst case over A and −A. Here, instead of sign error probability, we consider the 452

estimation for A itself. 453

The extreme case with infinite number of samples available for network 454

reconstruction is considered to give a lower bound on the accuracy for the finite data 455

case. Note that with infinite number of samples a sufficient statistic for the estimation 456

of the parameter A is the marginal distributions of X1(t); no information on the 457

correlation of
(
X1(t)

)
t∈[T ]

across time t can be obtained. A similar observation is made 458

in [7] for sampling stochastic differential equations. 459

We first consider the transient case with X(0) = 0 as stated in the section of the 460

model for gene expression dynamics. With infinite data the covariance matrix 461

Σt , Cov(X(t)) =
∑t
τ=1(A∗)t−τAt−τ can be recovered for t ∈ [T ]. Now we want to 462

solve A from (Σt)t∈[T ]. As a special case, if A∗A = ρIn (i.e., ρ−1/2A is orthogonal) then 463

we will have Σt =
∑t−1
τ=0 ρ

τIn. As a result, given (Σt)t∈[T ] in the above form, no more 464

information of A can be obtained other than ρ−1/2A being orthogonal, with n(n−1)
2 465

degrees of freedom remaining. In general case it is not clear if A can be recovered from 466

(Σt)t∈[T ]. 467

Now consider the case where Xk is in steady state; i.e., X(0) is random such that 468

Cov(X(t)) is invariant with t. With infinite amount of data we can get the covariance 469

matrix Σ, which satisfies Σ = A∗ΣA+ I. Since covariance matrices are symmetric, we 470

have n(n+1)
2 equations for n2 variables in A. Thus A is in general not determined by the 471
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equation uniquely. In fact, note that Σ is positive definite. Then by eigendecomposition 472

Σ = QΛQ∗, where Q is an orthogonal matrix and Λ the diagonal matrix of the 473

eigenvalues of Σ. Then Λ = (Q∗AQ)∗Λ(Q∗AQ) + I. Let B = QAQ∗. Then Λ = B∗ΛB. 474

By the Gram–Schmidt process, B can be determined with n(n−1)
2 degrees of freedom. 475

So the network cannot be recovered from the stationary covariance matrix. 476

In summary, the recovery of the matrix A is generally not possible in the stationary 477

case, and also not possible in the transient case at least when A is orthogonal. To 478

reconstruct A, further constraints (like sparsity) may be required. 479

Discussion 480

One-shot sampling in the literature 481

This section reviews the sampling procedures reported in several papers measuring gene 482

expression levels in biological organisms with samples collected at different times to 483

form time series data. In all cases, the sampling is one-shot, in the sense that a single 484

plant or cell is only sampled at one time. 485

Microorganisms 486

In the transcriptional network inference challenge from DREAM5 [8], three compendia 487

of biological data sets were provided based on microorganisms (E. coli, S. aureus, and S. 488

cerevisiae), and some of the data corresponded to different sampling times in a time 489

series. Being based on microorganisms, the expression level measurements involved 490

multiple individuals per sample, a form of one-shot sampling. 491

Plants 492

In [9], the plants are exposed to nitrate, which serves as a synchronizing event, and 493

samples are taken from three to twenty minutes after the synchronizing event. The 494

statement “. . . each replicate is independent of all microarrays preceding and following 495

in time” suggests the experiments are based on one-shot sampling. In contrast, the 496

state-space model with correlation between transcription factors in an earlier time and 497

the regulated genes in a later time fits multi-shot sampling. [10] studied the gene 498
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expression difference between leaves at different developmental stages in rice. The 12th, 499

11th and 10th leaf blades were collected every 3 days for 15 days starting from the day 500

of the emergence of the 12th leaves. While a single plant could provide multiple samples, 501

namely three different leaves at a given sampling time, no plant was sampled at two 502

different times. Thus, from the standpoint of producing time series data, the sampling 503

in this paper was one-shot sampling. [11] devised the phenol-sodium dodecyl sulfate 504

(SDS) method for isolating total RNA from Arabidopsis. It reports the relative level of 505

mRNA of several genes for five time points ranging up to six hours after exposure to a 506

synchronizing event, namely being sprayed by a hormone trans-zeatin. The samples 507

were taken from the leaves of plants. It is not clear from the paper whether the samples 508

were collected from different leaves of the same plant, or from leaves of different plants. 509

Animals 510

[12] likely used one-shot sampling for their −24, 60, 120, 168 hour time series data from 511

mouse skeletal muscle C2C12 cells without specifying whether the samples are all taken 512

from different individuals. [13] produced time series data by extracting cells from a 513

human, seeding the cells on plates, and producing samples in triplicate, at a series of six 514

times, for each of five conditions. Multiple cells are used for each sample with different 515

sets of cells being used for different samples, so this is an example of one-shot sampling 516

of in vitro experiment in the sense that each plate of cells is one individual. The use of 517

(five) multiple conditions can serve as a surrogate for a single individual set of cells to 518

gain the effect of multi-shot sampling. Similarly, the data sets produced by [14] 519

involving the plating of HeLa S3 cells can be classified as one-shot samples because 520

different samples are made from different sets of individual cells. Interestingly, the 521

samples are prepared under one set of conditions, so the use of different conditions is 522

not adopted as a surrogate for multi-shot sampling. However, a particular line of cells 523

was selected (HeLa S3) for which cells can be highly synchronized. Also, the paper does 524

not attempt to determine causal interactions. 525

In silico 526

The three in silico benchmark suites described in the GeneNetWeaver paper on 527

performance profiling of network inference methods [1] consisted of steady state, and 528
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therefore one-shot, samples from dynamical models. However, the GeneNetWeaver 529

software can be used to generate multi-shot time series data, and some of that was 530

included in the network inference challenges, DREAM3, DREAM4, and DREAM5 [1, 8]. 531

On biological replicates 532

In many biological experiments, independent biological replicates are used to reduce the 533

variation in the measurements and to consequently increase the power of the statistical 534

tests. It turns out that both how to use biological replicates, and the power of biological 535

replicates, depend on whether the sampling is one-shot or multi-shot. To focus on this 536

issue we first summarize how replicates have traditionally been used for the more 537

common problem of gene differential expression analysis, before turning to the use of 538

replicates for recovery of gene regulatory networks. 539

The following summarizes the use of replicates for gene differential expression 540

analysis. A recent survey [15] suggests a minimum of three replicates for RNA-seq 541

experiments whenever sample availability allows. Briggs et al. [16] studies the effect of 542

biological replication together with dye switching in microarray experiments and 543

recommends biological replication when precision in the measurements is desired. Liu et 544

al. [17] studies the tradeoff between biological replication and sequencing depth under a 545

sequencing budget limit in RNA-seq differential expression (DE) analysis. It proposes a 546

metric for cost effectiveness that suggests a sequencing depth of 10 million reads per 547

library of human breast cells and 2–6 biological replicates for optimal RNA-seq DE 548

design. Schurch et al. [18] studies the number of necessary biological replicates in 549

RNA-seq differential expression experiments on S. cerevisiae quantitatively with various 550

statistical tools and concludes with the usage of a minimum of six biological replicates. 551

The choice of replication strategy depends on how the statistical algorithm uses the 552

replicate data. In many differential analysis software packages replicates are treated as 553

independent samples with identical experimental conditions. For example, in edgeR [19] 554

and sleuth [20] the logarithm of the abundance of gene i in sample m is assumed to be 555

x∗mβi, where xm is the column vector of design characteristics with respect to p variates 556

for sample m and βi the column vector of the associated effects of the p variates to gene 557

i. Replicate samples can then be used to expand the design matrix x with identical 558
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columns. Note that, as a result, replicates are not necessary for edgeR and sleuth 559

because samples with different design characteristics can all contribute to the estimation 560

of β. It is then not clear whether it is better to have more replicates under the same 561

condition, or to have more conditions, for a fixed total number of samples. 562

For regulatory network reconstruction there is even less consensus on how replicates 563

should be used. One straightforward way is to reduce the replicates into a single set of 564

data by averaging either directly or after a random resampling of the original replicated 565

data. In this case the mean of the replicates are used as a better estimate of the 566

population than each single replicate, while higher moments of the empirical distribution 567

of the replicates are practically ignored. Another way adopted in [9] is to account for all 568

four potential transitions between two replicates in two adjacent sampling times in their 569

machine learning algorithm due to the one-shot nature of the replicates. In the next 570

section, we illustrate why replicates should be used differently for one-shot and 571

multi-shot sampling, in the context of recovering a circadian clock network model. 572

A case study on Arabidopsis circadian clock network 573

As we have discussed earlier, the current expression datasets are prominently one-shot, 574

making a direct comparison between one-shot and multi-shot sampling in real biological 575

data difficult. The lack of a well-accepted ground truth of the gene regulatory network 576

also makes performance evaluation hard, if not impossible. To test the applicability of 577

the sampling models on real biological data, we generate expression data from a 578

most-accepted Arabidopsis circadian clock model using stochastic differential equation 579

(SDE) model similar to GeneNetWeaver with condition-dependent Brownian motions, 580

and evaluate the performance of BSLR. 581

To extend the sampling models in this paper to the more biologically plausible SDE

models, we model the individual and condition-dependent variations by independent

and coupled Brownian motions. Following the Arabidopsis clock network in [21], we let

genes 1, 2, 3, and 4 be LHY, TOC1, X and Y, and construct the following group of

SDEs (the dark condition in [21] is assumed here).

dxk1,t =

(
n1(zk3,t)

a

ga1 + (zk3,t)
a
−

m1x
k
1,t

k1 + xk1,t

)
dt+ σxco,1x

k
1,tdB

x,ck
co,1,t + σxbi,1x

k
1,tdB

x,k
bi,1,t,
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dyk1,t =

(
p1x

k
1,t − r1yk1,t + r2z

k
1,t −

m2y
k
1,t

k2 + yk1,t

)
dt

+ σyco,1y
k
1,tdB

y,ck
co,1,t + σybi,1y

k
1,tdB

y,k
bi,1,t,

dzk1,t =

(
r1y

k
1,t − r2zk1,t −

m3z
k
1,t

k3 + zk1,t

)
dt+ σzco,1z

k
1,tdB

z,ck
co,1,t + σzbi,1z

k
1,tdB

z,k
bi,1,t,

dxk2,t =

(
n2(zk4,t)

b

gb2 + (zk4,t)
b

gc3
gc3 + (zk1,t)

c
−

m4x
k
2,t

k4 + xk2,t

)
dt

+ σxco,2x
k
2,tdB

x,ck
co,2,t + σxbi,2x

k
2,tdB

x,k
bi,2,t,

dyk2,t =

(
p2x

k
2,t − r3yk2,t + r4z

k
2,t − (m5 +m6)

yk2,t
k5 + yk2,t

)
dt

+ σyco,2y
k
2,tdB

y,ck
co,2,t + σybi,2y

k
2,tdB

y,k
bi,2,t,

dzk2,t =

(
r3y

k
2,t − r4zk2,t − (m7 +m8)

zk2,t
k6 + zk2,t

)
dt+σzco,2z

k
2,tdB

z,ck
co,2,t+σ

z
bi,2z

k
2,tdB

z,k
bi,2,t,

dxk3,t =

(
n3(zk1,t)

d

gd4 + (zk1,t)
d
−

m9x
k
3,t

k7 + xk3,t

)
dt+ σxco,3x

k
3,tdB

x,ck
co,3,t + σxbi,3x

k
3,tdB

x,k
bi,3,t,

dyk3,t =

(
p3x

k
3,t − r5yk3,t + r6z

k
3,t −

m10y
k
3,t

k8 + yk3,t

)
dt

+ σyco,3y
k
3,tdB

y,ck
co,3,t + σybi,3y

k
3,tdB

y,k
bi,3,t,

dzk3,t =

(
r5y

k
3,t − r6zk3,t −

m11z
k
3,t

k9 + zk3,t

)
dt+ σzco,3z

k
3,tdB

z,ck
co,3,t + σzbi,3z

k
3,tdB

z,k
bi,3,t,

dxk4,t =

(
n5g

e
5

ge5 + (zk2,t)
e

gf6

gf6 + (zk1,t)
f
−

m12x
k
4,t

k10 + xk4,t

)
dt

+ σxco,4x
k
4,tdB

x,ck
co,4,t + σxbi,4x

k
4,tdB

x,k
bi,4,t,

dyk4,t =

(
p4x

k
4,t − r7yk4,t + r8z

k
4,t −

m13y
k
4,t

k11 + yk4,t

)
dt
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+ σyco,4y
k
4,tdB

y,ck
co,4,t + σybi,4y

k
4,tdB

y,k
bi,4,t,

dzk4,t =

(
r7y

k
4,t − r8zk4,t −

m14z
k
4,t

k12 + zk4,t

)
dt+ σzco,4z

k
4,tdB

z,ck
co,4,t + σzbi,4z

k
4,tdB

z,k
bi,4,t.

Here xki,t, yki,t, and zki,t denote the mRNA abundance, and cytoplasmic and nuclear 582

protein concentrations of gene i at time t in plant k. The B terms are independent 583

standard Brownian motions (Wiener processes). Note the linear diffusion terms 584

attenuate the Brownian motions as the processes get close to 0 and consequently keep 585

the processes nonnegative. Compared to the GLM analyzed in this paper, this SDE 586

model captures the nonlinearity of the regulatory interactions, the continuous-time 587

nature of the dynamics, and the detailed diffusion from mRNA to cytoplasmic and 588

nuclear protein. So the SDE model is much more complicated and considered a basic 589

version of the state-of-the-art circadian clock model (see [22,23]). Nevertheless, the SDE 590

model shares a property with the GLM that allows the gene regulatory interactions to 591

be summarized by a single signed directed graph: the effect of increasing the mRNA 592

abundance of one gene on that of another has a constant sign regardless of the mRNA 593

abundances and the protein concentrations of any genes. For example, the drift of x1 594

(mRNA of LHY ) would have a tendency of increasing with an increased x3 (mRNA of 595

X) through the equations for y3 (cytoplasmic protein of X) and z3 (nuclear protein of X) 596

regardless of the specific values of all the x’s, y’s and z’s. Fig. 8 shows the signed 597

directed graph for the SDE model of Locke network. Now we have a ground-truth 598

network based on the SDE model. 599

Fig 8. The signed directed graph for the Locke network.

We choose the parameters in the drift coefficients (the terms in front of the dt’s) 600

accordingly to the supplementary material of [21], where the authors optimized the 601

parameters to fit experimental results. We sample the SDE at times 0, 2, 4, 6, 8, and 10 602

for a single condition (C = 1) with three replicates (R = 3), σco = 0.3 and σbi = 0.4, 603

and obtain the performance of BSLR in Table 2. The estimates and the errors are based 604

on 1000 simulations for each sampling method. Here the significance level of the 605

Granger causality test in BSLR is set to 0.5. Note a random guess would have 606

FDR = 0.75 and FNR + 1
2FPR = 1. We see from Table 2 that BSLR without replicate 607
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sampling method replicate averaging FDR FNR FPR

one-shot yes 0.71± 0.04 0.69± 0.04 0.54± 0.04
one-shot no 0.74± 0.04 0.73± 0.04 0.54± 0.04
multi-shot yes 0.67± 0.04 0.64± 0.04 0.55± 0.04
multi-shot no 0.59± 0.04 0.55± 0.04 0.56± 0.04

Table 2. BSLR evaluation on Locke network. The errors are estimated using
Hoeffding’s inequality over 1000 simulations with significance level 0.05.

averaging on one-shot sampling data is no different from random guessing, while BSLR 608

with replicate averaging doing slightly better in FDR and FNR. This is because 609

replicate averaging of one-shot data practically increases the condition effect by 610

reducing the biological variation, and thus gets a better temporal correlation between 611

one-shot samples of adjacent times. BSLR performs better on multi-shot data compared 612

to one-shot data because the biological variations of the previous times also contribute 613

to the temporal correlation. In particular, BSLR without replicate averaging on the 614

multi-shot data has the best performance because it allows tracking the individual 615

replicates rather than merely tracking their averages. Although the performance 616

numbers appear far from ideal, this demonstrates remarkable improvement from BSLR 617

with replicate averaging on one-shot data to BSLR without replicate averaging on 618

multi-shot data, especially considering the highly nonlinear SDE model, the unobserved 619

protein concentrations levels, the very limited number of 18 samples (3 replicates with 6 620

times) and the fact that BSLR does not use any knowledge of the (around 60) 621

parameters or the form of the equations, highlighting the difference in the statistical 622

power of one-shot and multi-shot data and its implication in downstream statistical 623

analysis decisions (replicate averaging vs. no replicate averaging). 624

In summary, we demonstrated a setting of the biologically plausible Arabidopsis 625

circadian clock network with a single condition, where the BSLR performs similarly to a 626

random guessing algorithm under one-shot sampling, and performs significantly better 627

under multi-shot sampling. We also show that whether replicate averaging should be 628

done or not varies with the sampling method. 629
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Conclusions 630

One-shot sampling can miss a lot of potentially useful correlation information. Often 631

gene expression data collected from plants is prepared under one-shot sampling. One 632

factor that can partially mitigate the shortcomings of one-shot sampling is to prepare 633

samples under a variety of conditions or perturbations. One-shot samples grown under 634

the same condition can then be thought of as a surrogate for the multi-shot samples of 635

an individual plant. 636

To clarify issues and take a step towards quantifying them, we proposed a gene 637

expression dynamic model for gene regulatory network reconstruction that explicitly 638

captures the condition variation effect. We show analytically and numerically the 639

performance of two algorithms for single-gene and multi-gene settings. We also 640

demonstrate the difficulty of network reconstruction without condition variation effect. 641

There is little agreement across the biology literature about how to model the 642

impact of condition on the gene regulatory network. In some cases, it is not even clear 643

that we are observing the same network structure as conditions vary. Nevertheless, our 644

results suggest that the preparation of samples under different conditions can partially 645

compensate for the shortcomings of one-shot sampling. 646

Supporting information 647

S1 Appendix. Joint estimation for single-gene autoregulation recovery. 648

The parameters A, γ, σ, and σte are assumed unknown and jointly estimated in GLRT. 649

S2 Appendix. Split Gaussian network prior. The random network prior 650

distribution used to generate the multi-gene network. 651
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